Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1577575

ABSTRACT

Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.


Subject(s)
Aerosols , COVID-19 , Drug Delivery Systems , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nebulizers and Vaporizers , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design , Humans , Infection Control/methods , Models, Biological , Particle Size , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , SARS-CoV-2
2.
Drug Deliv ; 28(1): 1496-1500, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1309552

ABSTRACT

COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.


Subject(s)
Aerosols , COVID-19 , Disease Transmission, Infectious/prevention & control , Metered Dose Inhalers , Nebulizers and Vaporizers , Respiration, Artificial/methods , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/physiopathology , COVID-19/therapy , COVID-19/transmission , Combined Modality Therapy , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Occupational Exposure/prevention & control , Research Design , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , Risk Management , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL